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1 Introduction

In Chapter 5, we explored different data assimilation (DA) methods theoretically. This project is
intended to give you hands-on experience about their code implementation and get you familiar
with different DA methods’ behaviors. We use the famous 3-variable Lorenz-63 model as our
toy numerical weather model for its simplicity and its similar chaotic behaviors as the real NWP
models.

1.1 Lorenz-63 model

Lorenz (1963) developed a simplified 3-variable model for the atmospheric convection. The
equations for the Lorenz-63 model are

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

(1)

where σ = 10, β = 8/3, ρ = 28. We use the Runge-Kutta 4-stage method to discretize the
forward Lorenz-63 model. After getting the forward model, we developed its tangent linear and
adjoint model following the instructions in Chapter 5. Figure 1 shows the trajectory generated
by the Lorenz-63 model.

Figure 1: The trajectory of the Lorenz-63 model with parameters σ = 10, β = 8/3, ρ = 28.
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1.2 DA system L63-DAS for the Lorenz-63 model

1.2.1 DA methods included in the L63-DAS

L63-DAS is a data assimilation package for the Lorenz-63 model. It includes the following DA
methods:

• Optimal interpolation

• 3D-Var

• incremental 4D-Var with multi-outerloops

• Perturbed Observation EnKF

• (Local) Ensemble Transform Kalman Filter (LETKF)

All the mentioned methods are already available in the package, and you can directly compare
their performance through observing system simulation experiments (OSSE).

1.2.2 General procedure for OSSE

Here we briefly introduce the general procedure for OSSE. One advantage of the OSSE is that
we have truth (i.e., the true trajectory of the x, y, z for our Lorenz-63 model), which are not
available in our real daily applications. Access to the true trajectory (i.e., xt, yt, zt) enables us to
directly compare the accuracy of the analysis (i.e., xa, ya, za) generated by different DA methods.

In L63-DAS, an OSSE includes the following steps:

1. Generate the true trajectory xt from the Lorenz-63 model M.

2. Create the observations yo by adding Gaussian noise ε to the simulated quantity from the
true trajectory: yo = H(xt) + ε, where ε ∼ N (0, r2).

3. After setting an initial condition xb
0, integrate the Lorenz-63 model from xb

0 to get the
background xb

1 = M(xb
0) until the first DA step. Assimilate available observations yo

1 at
this time step and update the background to the analysis xa

1. This analysis will serve the
initial condition to get the background for the next DA step: xb

2 =M(xa
1).

4. Repeat Step 3 for the remaining steps.

5. Finally, you get the whole trajectory of background xb and analysis xa. You can compare
their accuracy with the truth xt to assess each DA method’s performance.

One metric to evaluate the performance of assimilation method is the root mean square
error (RMSE). For each assimilation cycle, we have both truth (i.e., xt, yt, zt) and analysis (i.e.,
xa, ya, za). The total RMSE of the analysis at this cycle is defined as

RMSE =

√
1

3
[(xt − xa)2 + (yt − ya)2 + (zt − za)2] (2)
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1.3 A short code guide to L63-DAS

1.3.1 Install the L63-DAS on deepthought2

1. Log into deepthought2 through the command
ssh -X -Y your_user_name@rhel8.deepthought2.umd.edu

2. Load environment by running the following commands
module load intel

module load matlab (if you want to use Matlab)

3. Go to your experiment directory:
cd /lustre/your_user_name

4. Copy the L63-DAS package to your current directory:
cp -r /lustre/aosc614-1vxk/L63-DAS .

5. After entering directory L63-DAS, generate executables:
bash -xe compile_all.bsh

After running this command, you will see fwd.exe, oi.exe, 3dvar.exe, inc4dvar.exe

and enda.exe in your current directory.

1.3.2 General code structures

The naming convention is:

• test_*.f90: main programs for generating executables *.exe.

• mod_*.f90: modules contain different DA methods and support libraries.

• compile_*.bsh: compiling scripts for different executables *.exe.

The numerical Lorenz-63 model is in mod_lorenz63_fwd.f90 while each data method is built
independently as a module in the file mod_lorenz63_[DA_short_name].f90.

1.3.3 Important output files

Each DA subsystem (3dvar.exe, inc4dvar.exe, enda.exe) will output its experiment results
in several files:

• fort.10020: truth of x, y, z for each DA cycle (Each line represents results from one cycle).

• fort.10030: background of x, y, z for each DA cycle.

• fort.10040: analysis of x, y, z for each DA cycle.

• fort.10010: observation of x, y, z for each DA cycle.

Since all executables will generate their outputs with the same name, you might want to rename
those files immediately after finishing each experiment. You can use the script rename_output.bsh
for easy renaming. Its usage is introduced in the next section.
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1.3.4 Useful Utilities

• rename_output.bsh: script for renaming experiment output.

After running each DA methods (those executables ended with .exe), you may want
to rename the output for easier post-processing. In this case, you can utilize the script
rename_output.bsh. The command is:

bash rename_output.bsh [filename]

For example, you may want to run the command:

bash rename_output.bsh letkf_m3

after you get the results from 3-member LETKF. Now all your experiment results are in
the files letkf_m3.100*0.

• rmse_single_method.m: MATLAB script for a quick check of the time series of the truth,
background, analysis trajectory, and analysis errors.

1.4 Description of this project

This project has three goals. Using Lorenz-63 model as an example, we will explore:

• why we need to do DA for NWP applications (Part B)

• how variational methods work (Part B)

• how ensemble Kalman filters work (Part C)

• how hybrid methods work (Part D)

2 Part A: Warm-up

In this part, we will try to install L63-DAS on deepthought2, and then run the Lorenz-63 forward
model and generate a trajectory similar to the one in Figure 1.

2.1 Tasks

1. Follow the instructions in Section 1.3 and install L63-DAS under your directory.

2. Now run the Lorenz-63 forward model to generate a random trajectory.
(run the command./fwd.exe. It then generates outputs into the file fort.10020)

3. Rename the output as fwd.10020 with the script rename_output.bsh.
(run the command bash rename_output.bsh fwd)

4. Read the file fwd.10020 and plot the trajectory. Are you able to get something similar to
Figure 1?
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3 Part B: Variational method

From this part, we will start to conduct assimilation experiments: We will run OSSEs for different
assimilation methods with the L63-DAS. Let’s first explore variational methods.

3.1 Related codes

You will need to use oi.exe, 3dvar.exe and inc4dvar.exe in Part B. These two executables
receive no interactive inputs, which means you need to modify the source code if you want
to change parameters. After you made modification to the source code, remember to re-
compile the code to generate new executable for your modifications to take into
effect. You can compile the source codes through utility scripts named compile_*.bsh. For
these two executables, their main programs, major modules, and stand-alone compiling utilities
are:

• oi.exe (Optimal interpolation):
test_oi.f90 mod_lorenz63_oi.f90 compile_oi.bsh

• 3dvar.exe (lean 3D-Var):
test_3dvar.f90 mod_lorenz63_3dvar.f90 compile_3dvar.bsh

• inc4dvar.exe (incremental 4D-Var with multi-outerloops):
test_inc4dvar.f90 mod_lorenz63_inc4dvar.f90 compile_inc4dvar.bsh

For all the methods in this part, they use a static background error covariance B. This matrix
is stored in the file fort.1040.

You can also use the plotting script rmse_single_method.m to have a quick check of the time
series of the true/background/analysis trajectory and analysis errors.

3.2 Tasks

1. (Necessity of DA) Like the real weather, the Lorenz-63 system is a chaotic system, which
means even small discrepancy at the initial time will lead to completely different trajectories
at the later time. We will first explore why we need DA. Now let’s see what will happen
if we stop doing assimilation (Though we are using 3D-Var as an example, it applies to all
DA methods):

(a) Perform OSSE with 3D-Var for every cycle and then overlay the truth and analysis
trajectory with different colors in a separate panel for each variable x, y, z. Finally,
plot the total analysis RMSE for each cycle in another panel. From this figure, can
the analysis trajectory always be near the truth?
(hints : Without modifying anything in test_3dvar.f90, run 3dvar.exe and its out-
puts are in the files fort.100*0. Rename them with rename_output.bsh. Then plot
the truth and analysis trajectories. You can use rmse_single_method.m for a quick
look.)
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(b) Now let’s stop doing DA after cycle 3000. Plot the same figure required in (a). Then
(1) What do you observe after cycle 3000? (2) How does the RMSE grow after the
cycle 3000? (3) Will the RMSE grow to infinity, or its maximum value is bounded?
(hints: Modify the condition statement above the line ”Call lorenz_3dvar(...)”
in the source code test_3dvar.f90. After modification, recompile 3dvar.exe with
the command bash compile_3dvar.sh. Then run 3dvar.exe)

(c) Following (b), if we resume DA after cycle 3500, what will happen?

What you observed in this experiment is a universal phenomenon for chaotic systems. It
illustrates why we need to do DA continuously.

2. (Equivalence between OI and 3D-Var) In class, we prove that under the assumption of
the linear observation operator and Gaussian additive observation error, OI and 3D-Var
generate the same solution. We will examine if this is true:

(a) Generate OI analysis with oi.exe

(b) Generate 3D-Var analysis with 3dvar.exe

(c) Compare if xaOI = xa3DV ar, y
a
OI = ya3DV ar, z

a
OI = za3DV ar: Check |(qaOI − qa3DV ar)/q

a
OI |,

where q = x, y, z. Due to the way that computer stores data and the minimization
routine, we won’t get completely same digits, but we should get very small |(qaOI −
qa3DV ar)/q

a
OI | if they are the same.

3. (3D-Var versus 4D-Var) It’s a tremendous advance from 3D-Var to 4D-Var since 4D-Var
accounts for the “error of the day”. In 4D-Var, we assimilate observations from several
time slots in each DA cycle, tracing back their impact through the adjoint to the initial
background. We will compare the performance of these two methods:

(a) Generate 3D-Var analysis and plot the time series of analysis RMSE. Calculate the
average RMSE for cycle 3000-4000.

(b) Genearte 4D-Var analysis, and then overlay its analysis RMSE over 3D-Var results.
Calculate the average RMSE for cycle 3000-4000.
(Make sure in test_inc4dvar.f90:
kitermax_out=3,
nsteps_per_da=2,
nsteps_da_window=2

then recompile inc4dvar.exe with “bash compile_inc4dvar.sh”, and run inc4dvar.exe)

What did you find from this experiment?
(Tips : The time series of the analysis RMSE will be very noisy. You can further perform
a moving average to your raw time series of RMSE. Specifically, for the RMSE σi at cycle
i , we can generate a smoothed one by

σsmooth
i =

1

2N + 1

N∑
−N

σi+k (3)
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where N is the half window size. You can select, for example, N = 20, and you will see
the new RMSE series is smoother than the original series.

4. (4D-Var: impact of the assimilation window length): What if we increase the assimilation
window length? How does it influence the analysis? Let’s find it out:
Let’s fix the outerloop as 3 (set kitermax_out=3 in test_inc4dvar.f90). Then vary
the window length from 2 to 4 (i.e., nsteps_per_da=2,nsteps_da_window=2 for window
length of 2) and generate 4D-Var analysis for each scenario. Overlay their smoothed analysis
RMSE series in one figure, and calculate average analysis RMSE for cycle 3000-4000.

What can you conclude from the results? Remember to recompile inc4dvar.exe for each
experiment.
(Tips :
You can wrap all command together to get the result for each experiment. For example,
assume you are now running the experiments with the window length of 3. After you set
nsteps_per_da=3,nsteps_da_window=3. you can run the command below in one line:

bash compile_inc4dvar.bsh; ./inc4dvar.exe; bash rename_output.bsh 4dvar_out3_obs3

Then your 4D-Var results for this case will be saved into files 4dvar_out3_obs3.100*0. )

5. (4D-Var: impact of the outer loop) In all previous 4D-Var experiments, we use three
outerloops (kitermax_out=3). But how does the outerloop influence the results? First let’s
set a long assimilation window length of 6 (set nsteps_per_da=6,nsteps_da_window=6).
Change the number of outerloop (kitermax_out) from 1 to 3 and generate 4D-Var analysis
for each case.

(a) Overlay their smoothed analysis RMSE series in one figure and calculate average
analysis RMSE for cycle 3000-4000.

(b) For outerloop equals 1, overlay the truth and analysis trajectory for x, y, z.

(c) repeat (b) for outerloop is 2 and 3.

What did you find? Can you try to explain why this happens?
(hints : Think about the approximation used in the formulation of incremental 4D-Var, and
whether they are still valid for long assimilation window length).

4 Part C: Ensemble method

We will now focus on the ensemble methods, which also takes the ”error of the day” into account
while whose developments are much more simple than 4D-Var. In addition to the technical
simplicity, ensemble methods also provide us the explicit uncertainty estimates of our analysis
as byproducts, which are not available in 4D-Var.
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4.1 Related codes

For the experiments in Part C, you only need to use enda.exe, which works with you interactively.
After typing ./enda.exe in the command line, the program will:

1. ask you to input the observation error, which should be a float number. For all the ex-
periments in this project, input the same value 1.414d0 (where d0 indicates this is a
double-precision float number).

2. Then the program will ask you to input the ensemble size. You will need to input an integer
from the keyboard (for example, 3).

3. Then the program will ask you to input the inflation parameter, which should be a real
number between 0.d0 and 1.d0.

4. Finally, the program will print out a list of all ensemble methods available, and ask you
to select one. In the experiments in Part B, you will input 1 for LETKF, 2 for perturbed
observation EnKF.

After these four inputs, the program will run OSSE, and the results are written into files, as
indicated in Section 1.3.3.

4.2 Tasks

For all the following experiments, the observation errors are all set with a value of 1.414d0.

1. (Compare 3D-Var, 4D-Var and LETKF)

(a) Use 10-member LETKF (filter 1 in enda.exe) with no inflation (value 0.d0 for in-
flation parameter). Then in the figure overlay its analysis RMSE with 3D-Var and
4D-Var. Compare their analysis RMSE for cycle 3000-4000

How is its performance compared with the variational methods?
Note that since we have ensemble members now, we can explicitly calculate the
covariance between any pair of model states (e.g., x and y) for any time
step. By contrast, though the background error covariance in 4D-Var will evolve with
time, we cannot write out the varying covariance that contains the “error of the day”
at later time steps.

(b) Now use 3-member LETKF (filter 1 in enda.exe) with no inflation (value 0.d0 for
inflation parameter). Then plot the same figure in (a). How is its performance com-
pared with the variational methods now? If comparing its analysis trajectory with
truth, what did you find?

2. (Remedy to small ensemble size) In 1(b), we see the ensemble Kalman filter encounters
problems when the ensemble size is small compared to the dimension of the model state
(i.e., 3). In real applications, the dimension of model state (i.e., model state of the GFS)
is far greater than the ensemble size we use (Nensemble ∼ hundreds). How do we fix this
problem?
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The ensemble DA community developed several simple but effective tools to deal with this
problem. Among them, one is called the Relaxation to Prior Perturbation (RTPP, Zhang
et al., 2004). The scheme itself is extremely simple, after we get the m-member analysis
perturbations ∆Xa = [δxa,1|δxa,2|...|δxa,m]. We create the final analysis perturbation by
merging this analysis perturbation and background perturbation, which are

∆Xa
final = α∆Xb + (1− α)∆Xa

Then we get the final analysis members by adding these final analysis perturbations back
to the ensemble analysis mean.

Now let’s see if this simple method works. We still use 3-member LETKF, but this time
with an inflation parameter of 0.5d0. Check the truth and analysis trajectory, does the
LETKF work correctly now?

3. (Partial observation coverage) In DA, the background error covariance plays an important
role in sharing information between different variables. Even some variables are not directly
observed, through the background error covariance, they can still be updated through ob-
servations for other variables. We will explore how LETKF works with partial observation
coverage:

(a) Start with 5-member LETKF with no inflation, remove observation for variable z,
and run the experiment. Plot the truth and analysis trajectory for each variable. (In
test_enda.f90, change the last .true. to .false. in the call “Call lorenz63_letkf(...)”.
After modification, recompile enda.exe and then ./enda.exe)

Is the LETKF able to work correctly? How is its average analysis RMSE compared
with full observation coverage for cycle 3000-4000?

(b) Still start with 5-member LETKF with no inflation, but this time remove observation
for variable y and rerun the LETKF experiments.

Can the LETKF work correctly now? If not, can you think of a way to make it work
without adding new observations?

4. (stochastic EnKF vs. deterministic EnKF) There are two types of ensemble Kalman fil-
ters. The perturbed observation EnKF belongs to the stochastic EnKF, while LETKF is
formulated in a deterministic manner. Their different formulations lead to their different
performances.

In this experiment, we will use no inflation. For both deterministic filter (1 for LETKF, )
and stochastic filter (2 for perturbed observation EnKF):

(a) calculate their average RMSE for cycle 3000-4000 for three ensemble sizes (3, 10, 15).

(b) plot the analysis trajectory over the truth trajectory for these two filters for the
ensemble size 10.

From the results of 4(a) and 4(b), what did you find?

10



5 Part D: Hybrid method

Penny [2014] developed a hyrbid method (hybrid-gain) that combines both the variational method
and ensemble method. Unlike hybrid-covariance method, hybrid-gain method requires minimal
code modifications if users already have a variational and ensemble system. In the hybrid-gain
method that combines 3D-Var and LETKF, we try to seek the final analysis xa

HG as

min J(xa
3DV ar) =(xa

3DV ar − x̄a
LETKF )TB−1

3DV ar(x
a
3DV ar − x̄a

LETKF )+

(yo −H(xa
3DV ar))

TR−1(yo −H(xa
3DV ar))

(4)

xa
HG = αx̄a

LETKF + (1− α)xa
3DV ar (5)

The equations above can be summarized as the following procedure for each DA cycle:

1. Assume we already got the m-member ensemble background Xb = [xb,1|xb,2|...|xb,m], where
each column of Xb represent one member.

2. Use LETKF to get the LETKF analysis mean x̄a
LETKF and analysis perturbations

∆Xa
LETKF = [δxa,1

LETKF |δx
a,2
LETKF |...|δx

a,m
LETKF ]

where δxa,k
LETKF = xa,k

LETKF − x̄a
LETKF , k=1,2,...,m.

3. Set x̄a
LETKF as the background for the 3D-Var: xb

3DV ar = x̄a
LETKF , and 3D-Var will then

generate its analysis xa
3DV ar.

4. Generate the hybrid-gain analysis xa
HG = αx̄a

LETKF + (1− α)xa
3DV ar.

5. Generate the final m-member ensemble HG analysis members Xa
HG = [xa,1

HG|x
a,2
HG|...|x

a,m
HG],

where xa,k
HG = xa

HG + δxa,k
LETKF , k = 1, 2, ...,m

6. Evolve each HG analysis member through NWP model to get the background at the next
DA step.

5.1 Tasks

In this part, we will build a hybrid-gain system based on the existing 3D-Var system (test_3dvar.f90)
and LETKF (test_enda.f90) and performing two experiments:

1. Build a hybrid-gain system that combines 3D-Var and LETKF.

2. Now let’s play with the hybrid-gain method:

(a) (Hybrid-gain vs. EnKF) With full observation coverage, use only 2 or 3 members and
no inflation, respectively run LETKF and your hybrid-gain system. For each method,
overlay their analysis trajectory over the truth trajectory. For the hybrid-gain method,
use α = 0.5.

(b) (Hybrid-gain vs. 3D-Var) following (2), now compare your smoothed Hybrid-gain
analysis RMSE with 3D-Var RMSE in the same figure. Compare their average RMSE
for cycle 3000-4000.

What did you find from 2(a) and 2(b)?
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5.2 Coding tips

1. To implement hybrid-gain, you can make a copy of test_enda.f90 and name it as test_hg.f90
and then try to insert 3D-Var subroutine lorenz63_3dvar into test_hg.f90.

2. 3D-Var subroutine lorenz63_3dvar is in the code mod_lorenz63_3dvar.f90. LETKF
subroutine lorenz63_letkf is in the code mod_lorenz63_letkf.f90.

3. After finishing writing the main program test_hg.f90, you will need to compile your
code with the script compile_hg.bsh. If your code has no coding error, you will see an
executable named hg.exe under the directory. And you will use this executable to run
the hybrid-gain method. Remember to select filter 1 for the LETKF code section when
running hg.exe.

6 (Optional) Part E: Information transport in a DA sys-

tem

In this part, we try to figure out how observations adjust background model state through
different components (i.e., B,H,L) in a DA system. Knowing how each component modifies
the background in a DA system enables us to trace back the components that failed to work
realistically when we get an inferior analysis. For example, in carbon data assimilation, the
variable localization method [Kang et al., 2011] significantly improve carbon flux estimation by
removing unrealistic ensemble inter-variable covariance due to small ensemble size. As the first
step, we will try to understand how those DA components transport information in different
scenarios.

6.1 Tasks

As shown in the Introduction, Lorenz-63 system includes three model variables (i.e., x, y, z), so
their background error covariance matrix B is a 3× 3 matrix. For the following scenarios, please
tell if the background will be updated due to the assimilation of observations. Specifically, you
need to determine: (1) if xa 6= xb, (2) if ya 6= yb, and (3) if za 6= zb. Please also briefly
explain your answer. For all the scenarios, please assume that the background value never
equals observation value(i.e., xb 6= xo, yb 6= yo, zb 6= zo), and the observation errors (i.e., R) are
nonzero.
(hints : Each scenario includes at least one special DA component so that you can make quick
judgements without calculation. If you cannot intuitively answer them, you can refer to KF/OI/3D-
Var equations.)

• (Scenario 1) Assuming you are using a OI/3D-Var system for the Lorenz-63 equations for
one DA cycle. For this cycle, you have direct observations xo, yo, zo, and your B has the

structure

exx exy exz
exy eyy eyz
exz eyz ezz

 where elements started with e are nonzero.
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• (Scenario 2) Assuming you are using a OI/3D-Var system for the Lorenz-63 equations for
one DA cycle. For this cycle, you only have direct observations xo, and your B has the

structure

exx exy exz
exy eyy eyz
exz eyz ezz

 where elements started with e are nonzero.

• (Scenario 3) Assuming you are using a OI/3D-Var system for the Lorenz-63 equations for
one DA cycle. For this cycle, you only have direct observations xo, and your B has the

structure

exx exy 0
exy eyy eyz
0 eyz ezz

 where elements started with e are nonzero.

• (Scenario 4) Assuming you are using a OI/3D-Var system for the Lorenz-63 equations for
one DA cycle. For this cycle, you only have direct observations xo, and your B has the

structure

exx 0 0
0 eyy 0
0 0 ezz

 where elements started with e are nonzero.

• (Scenario 5) Assuming you are using a OI/3D-Var system for the Lorenz-63 equations for

one DA cycle. For this cycle, your B has the structure

exx 0 0
0 eyy 0
0 0 ezz

 where elements

started with e are nonzero. However, in this case, you don’t have any direct observations.
Instead, you have one observation qo = h(x, y) = xt + yt + ε, where xt, yt are true value of
model state x, y, and ε a Gaussian noise.

• (Scenario 6) Assuming you are now using a 4D-Var system for the Lorenz-63 equations for

one DA cycle. For this cycle, your B0 has the structure

exx 0 0
0 eyy 0
0 0 ezz

 where elements

started with e are nonzero. Still, you only have direct observations for model state x. But
since you are using 4D-Var, the assimilation window length is set as 6, which means now
you actually have x observations from 6 time slots (i.e.,xo1, x

o
2, x

o
3, x

o
4, x

o
5, x

o
6).
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